MTH 301: Group Theory Homework IV

(Due 17/10)

- 1. Show that if G is finite group and p is the smallest prime dividing |G|, then any subgroup of index p is normal.
- 2. Consider the natural action $S_n \curvearrowright \{1, 2, \ldots, n\}$ by permuting its elements.
 - (a) Show that the permutation representation of this action is an isomorphism.
 - (b) Using this action, show that every permutation $\sigma \in S_n$ has a unique cycle decomposition.
 - (c) Show that the order of an element $\sigma \in S_n$ is the least common multiple of the length of the cycles in its unique cycle decomposition.
- 3. Prove the results from 4.2 (v) of the lesson plan.
- 4. Consider the self-action $S_n \curvearrowright^c S_n$ by conjugation.
 - (a) Show that if $\sigma \in S_n$ is an *m*-cycle, then each $\tau \in \mathcal{O}_{\sigma}(=\mathcal{C}_{\sigma})$ is also an *m*-cycle.
 - (b) The unique cycle decomposition of a permutation $\sigma \in S_n$ is given by

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_{k_{\sigma}},$$

where each σ_i is an m_i -cycle, and $\sum_{i=1}^{k_{\sigma}} m_i = n$. In other words, this decomposition induces a partition of the integer n as follows

$$n = m_1 + m_2 + \ldots + m_{k_\sigma}.$$

Show that two permutations of S_n lie in the same conjugacy class if, and only if they induce the same partition of the integer n.

- (c) Using (b), determine the size of each conjugacy class of S_n .
- 5. Prove the Class Equation stated in 4.2 (vi) of the lesson plan.
- 6. Let G be a finite group.
 - (a) Show that $g \in Z(G)$ if, and only if |N(g)| = |G|.
 - (b) If $|G| = p^n$, where p is a prime, then show that $Z(G) \neq \{1\}$. [Hint: Use the Class Equation.]
 - (c) Show that if $|G| = p^2$, where p is a prime, then G must be abelian.